lunes, 11 de mayo de 2015

Movimiento de caída libre

En cinemática, la caída libre es un movimiento de un cuerpo dónde solamente influye la gravedad. En este movimiento se desprecia el rozamiento del cuerpo con el aire, es decir, se estudia en el vacío. El movimiento de la caída libre es un movimiento uniformemente acelerado. La aceleración instantánea es independiente de la masa del cuerpo, es decir, si dejamos caer un coche y una pulga, ambos cuerpo tendrán la misma aceleración, que coincide con la aceleración de la gravedad (g). Esto lo podemos demostrar del siguiente modo:
Sabemos por la segunda ley de Newton que la fuerza es igual al producto entre la masa del cuerpo y la aceleración.
'Caída libre de cuerpos'
La única fuerza que influye en la caída libre (recordamos que se desprecia el rozamiento con el aire) es el peso, que es igual al producto entre la masa del cuerpo y la constante gravitatoria g.
'Caída libre de cuerpos'
Despejamos de la primera ecuación la aceleración.
'Caída libre de cuerpos'
Sustituimos la fuerza.
'Caída libre de cuerpos'
Por lo tanto nos queda que la aceleración del cuerpo siempre coincide con la constante gravitatoria
'Caída libre de cuerpos'
Otra forma de demostrar que la aceleración de los cuerpos en caída libre en el vacío tiene que ser la misma sin importar el peso de los objetos, es mediante un simple desarrollo lógico:
Supongamos dos cuerpos, el primero del doble de peso que el segundo. Ahora, interpretemos al primer objeto como dos de los segundos objetos unidos de alguna forma, entonces la aceleración del objeto más pesado debería ser la misma que la de cada uno de los dos objetos más livianos, puesto que si así no fuera entonces un cuerpo debería caer a diferentes velocidades dependiendo de si lo vemos como un solo objeto o como sus partes unidas.

Ondas estacionarias


Las ondas estacionarias son ondas producidas en un medio limitado, como, por ejemplo, una cuerda elástica no muy larga y fija en al menos uno de sus dos extremos. Para generar en dicha cuerda una onda estacionaria, se puede atar por un extremo a una pared y hacer vibrar al otro con una pequeña amplitud. Se obtienen pulsos transversales que viajan hasta la pared, donde se reflejan y vuelven. La cuerda es recorrida por dos ondas de sentido opuesto y se producen interferencias que, en principio, dan lugar a unas oscilaciones bastante desordenadas.


 Aumentando la frecuencia con la que se agita el extremo de la cuerda se puede conseguir que las oscilaciones adquieran el perfil mostrado por la figura adjunta. Corresponde a una onda en la que aumenta sensiblemente la amplitud y tiene un vientre fijo en el centro y dos nodos también fijos en los extremos. Esta onda se llama estacionaria porque, a diferencia del resto de ondas, en las que se aprecia un avance de las crestas y los valles, no parece moverse. 
Si se fijan los dos extremos de la cuerda y se estira transversalmente de uno, dos, tres puntos se puede generar en la cuerda una secuencia de ondas estacionarias con un número creciente de nodos y vientres, como las indicadas en la figura adjunta.





Una propiedad destacada de estas ondas estacionarias es que su longitud de onda (y, consecuentemente, su frecuencia) no puede adoptar cualquier valor arbitrario, sino sólo unos determinados valores que se relacionan con la longitud de la cuerda, mediante las siguientes expresiones:
l1 = 2L,   l2 = 2L/2,   l3 = 2L/3,   l4 = 2L/4,...   ln = 2nL/4   (siendo n = 1, 2, 3,..)
Teniendo en cuenta que l/T  = ln,  las frecuencias correspondientes son:
n1 = c/2L    n2 = 2c/2L    n3 = 3c/2L    n4 = 4c/2L,..    nn = nc/2L   (siendo n = 1, 2, 3,..)