lunes, 11 de mayo de 2015

Ondas estacionarias


Las ondas estacionarias son ondas producidas en un medio limitado, como, por ejemplo, una cuerda elástica no muy larga y fija en al menos uno de sus dos extremos. Para generar en dicha cuerda una onda estacionaria, se puede atar por un extremo a una pared y hacer vibrar al otro con una pequeña amplitud. Se obtienen pulsos transversales que viajan hasta la pared, donde se reflejan y vuelven. La cuerda es recorrida por dos ondas de sentido opuesto y se producen interferencias que, en principio, dan lugar a unas oscilaciones bastante desordenadas.


 Aumentando la frecuencia con la que se agita el extremo de la cuerda se puede conseguir que las oscilaciones adquieran el perfil mostrado por la figura adjunta. Corresponde a una onda en la que aumenta sensiblemente la amplitud y tiene un vientre fijo en el centro y dos nodos también fijos en los extremos. Esta onda se llama estacionaria porque, a diferencia del resto de ondas, en las que se aprecia un avance de las crestas y los valles, no parece moverse. 
Si se fijan los dos extremos de la cuerda y se estira transversalmente de uno, dos, tres puntos se puede generar en la cuerda una secuencia de ondas estacionarias con un número creciente de nodos y vientres, como las indicadas en la figura adjunta.





Una propiedad destacada de estas ondas estacionarias es que su longitud de onda (y, consecuentemente, su frecuencia) no puede adoptar cualquier valor arbitrario, sino sólo unos determinados valores que se relacionan con la longitud de la cuerda, mediante las siguientes expresiones:
l1 = 2L,   l2 = 2L/2,   l3 = 2L/3,   l4 = 2L/4,...   ln = 2nL/4   (siendo n = 1, 2, 3,..)
Teniendo en cuenta que l/T  = ln,  las frecuencias correspondientes son:
n1 = c/2L    n2 = 2c/2L    n3 = 3c/2L    n4 = 4c/2L,..    nn = nc/2L   (siendo n = 1, 2, 3,..)

No hay comentarios.:

Publicar un comentario